Skip to main content

Reaction screening

Using enzymes to drive a reaction is often preferred to chemical catalysts. A clear advantage of using enzymes is the high substrate specificity, which generally gives rise to high yields and high reaction rates, as well as products free from unwanted biproducts. Due to both technical and economic benefits, the enzymes used to catalyse reactions are often immobilized on the surface of different insoluble materials. The immobilization will lead to easier recycling, manipulation and separation of the enzyme, as well as an increase in its thermal and operational stability.

The most common applications for immobilized enzymes include esterifications, transesterifications, amidations and the modification of fats and oils. To identify the enzyme best suited for the conversion of a certain substrate, the candidate enzymes are put through a screening process. As the reaction conditions must ensure the stability of the enzyme and substrate, parameters such as solvent, temperature and pH should also be optimized to guarantee a high and pure product yield. In processes including enzyme development, there is also a need for screening of different methods of immobilization, as well as potential carrier materials, to ensure preserved enzyme activity.

As evaluation is generally needed for several different factors when developing an enzyme-catalysed process, easy screening of multiple reaction parameters will allow for easier and faster design of experiments. By being able to examine several parameters simultaneously in a multidimensional parameter space, the process can quickly be optimized. Through this, high parameter robustness can be achieved, thus also providing the process with high reproducibility, validity and reliability.

Magnetic rotating bed reactors

The SpinChem® magnetic rotating bed reactor (MagRBR), carries 0.5 mL solid phase resin, and is designed for screening of biocatalysts and biocatalytic reactions in liquid phase volumes of 5-100 mL. The SpinChem® MagRBR retains the solid phase particles, and conducts the mass transfer by impelling the movement of the liquid phase.

No preparations are required prior to implementing the MagRBR in screening applications, and the downstream processing is greatly minimized or completely cut out due to the lack of filtration steps. The SpinChem® MagRBR is delivered pre-packed with a variety of resins for catalysis and adsorption screening. As the SpinChem® MagRBR is spun by means of magnetic coupling, solution is continuously passed through the packed bed within, allowing the reactants in the different phases to interact. By running the reactions in minimized liquid volumes, the amount of enzyme and substrate needed is reduced, thus significantly increasing the rate of enzyme development. For even further streamlined screening, the SpinChem® magnetic stirrer with multiple positions can be used to run several reactions in parallel.

Automatic processes for efficient production

Automation of large-scale processes is often a requirement for economically viable chemical processes. The benefits of scale are best harvested at high throughputs and 24/7 operation. This leads to the demand for process automation, and the elimination of hands-on work.

Palladium catalyzed Suzuki couplings in a Mettler-Toledo EasyMax™ 102

Heterogeneous catalysis can be an effective tool for chemical synthesis, particularly in the discovery and development of pharmaceutical ingredients. The handling of these solid catalysts is sometimes challenging as it leads to more unit operations in the factory scale, as well as introduces additional work-up in the laboratory.

Enzyme immobilization screening using rotating bed reactors

Finding the optimal chemistry and solid-phase material for immobilization of enzymes relies heavily on trial and error. The right resin will ensure satisfactory immobilization yield, as well as high activity and stability of the enzyme.

Recycling Novozym® 435 with a rotating bed reactor in the EasyMax™ 102

Investigating reactions can easily grow from an idea into very time-consuming projects, but the upside of properly understanding the reaction is great. The choice of equipment has a very large impact on the efforts required. The rotating bed reactor is a tool that unlocks the full potential of your Mettler-Toledo EasyMax™ 102 Advanced synthesis workstation for this development.

Exploring the effectiveness of different types of activated carbon

Contaminations in liquids can often be removed using an adsorbent, such as granular activated carbon (GAC). The best choice of adsorbent is unique for each contaminant, and the effectiveness depends on many parameters. Failing to investigate these can lead to unnecessarily high material costs and long processing times.

Screening of Immobilized Enzymes in an EasyMax™ 102

Screening immobilized enzymes to find the best match with the substrate and reaction conditions can be a time-consuming process. The introduction of the solids in a stirred tank reactor leads to damage to the immobilized biocatalysts and makes filtration necessary.

Screening of immobilized lipases using rotating bed reactors

The SpinChem rotating bed reactor (RBR) has been proven to be a time and labor-efficient tool in the screening of biocatalysts. Here, we present the quick simultaneous screening of six different immobilized lipases for the esterification of lauric acid to propyl laurate using our pre-packed MagRBR lipase screening kit.

Simple scale-up using flexible reactors

Research and development quickly takes new directions, and the requirements on a laboratory may vary with every new project. Limiting yourself to equipment with a narrow scope of conditions and applications may become expensive, since new equipment must be acquired for anything out of scope. With budgets quickly consumed by other projects, the need for new equipment may mean significant delays and a reduced capability to take on emerging opportunities.